Source code for etna.analysis.forecast.plots

import itertools
import math
from copy import deepcopy
from enum import Enum
from typing import TYPE_CHECKING
from typing import Any
from typing import Dict
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import plotly
import plotly.graph_objects as go
import seaborn as sns
from matplotlib.lines import Line2D
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from statsmodels.graphics.gofplots import qqplot
from typing_extensions import Literal

from etna.analysis.forecast.utils import _prepare_forecast_results
from etna.analysis.forecast.utils import _select_quantiles
from etna.analysis.forecast.utils import _validate_intersecting_segments
from etna.analysis.forecast.utils import get_residuals
from etna.analysis.utils import _prepare_axes
from etna.datasets.utils import match_target_components

if TYPE_CHECKING:
    from etna.datasets import TSDataset
    from etna.transforms import Transform


[docs]def plot_forecast( forecast_ts: Union["TSDataset", List["TSDataset"], Dict[str, "TSDataset"]], test_ts: Optional["TSDataset"] = None, train_ts: Optional["TSDataset"] = None, segments: Optional[List[str]] = None, n_train_samples: Optional[int] = None, columns_num: int = 2, figsize: Tuple[int, int] = (10, 5), prediction_intervals: bool = False, quantiles: Optional[List[float]] = None, ): """ Plot of prediction for forecast pipeline. Parameters ---------- forecast_ts: there are several options: #. Forecasted TSDataset with timeseries data, single-forecast mode #. List of forecasted TSDatasets, multi-forecast mode #. Dictionary with forecasted TSDatasets, multi-forecast mode test_ts: TSDataset with timeseries data train_ts: TSDataset with timeseries data segments: segments to plot; if not given plot all the segments from ``forecast_df`` n_train_samples: length of history of train to plot columns_num: number of graphics columns figsize: size of the figure per subplot with one segment in inches prediction_intervals: if True prediction intervals will be drawn quantiles: List of quantiles to draw, if isn't set then quantiles from a given dataset will be used. In multi-forecast mode, only quantiles present in each forecast will be used. Raises ------ ValueError: if the format of ``forecast_ts`` is unknown """ forecast_results = _prepare_forecast_results(forecast_ts) num_forecasts = len(forecast_results.keys()) if segments is None: unique_segments = set() for forecast in forecast_results.values(): unique_segments.update(forecast.segments) segments = list(unique_segments) _, ax = _prepare_axes(num_plots=len(segments), columns_num=columns_num, figsize=figsize) if prediction_intervals: quantiles = _select_quantiles(forecast_results, quantiles) if train_ts is not None: train_ts.df.sort_values(by="timestamp", inplace=True) if test_ts is not None: test_ts.df.sort_values(by="timestamp", inplace=True) for i, segment in enumerate(segments): if train_ts is not None: segment_train_df = train_ts[:, segment, :][segment] else: segment_train_df = pd.DataFrame(columns=["timestamp", "target", "segment"]) if test_ts is not None: segment_test_df = test_ts[:, segment, :][segment] else: segment_test_df = pd.DataFrame(columns=["timestamp", "target", "segment"]) if n_train_samples is None: plot_df = segment_train_df elif n_train_samples != 0: plot_df = segment_train_df[-n_train_samples:] else: plot_df = pd.DataFrame(columns=["timestamp", "target", "segment"]) if (train_ts is not None) and (n_train_samples != 0): ax[i].plot(plot_df.index.values, plot_df.target.values, label="train") if test_ts is not None: ax[i].plot(segment_test_df.index.values, segment_test_df.target.values, color="purple", label="test") # plot forecast plot for each of given forecasts quantile_prefix = "target_" for forecast_name, forecast in forecast_results.items(): legend_prefix = f"{forecast_name}: " if num_forecasts > 1 else "" segment_forecast_df = forecast[:, segment, :][segment].sort_values(by="timestamp") line = ax[i].plot( segment_forecast_df.index.values, segment_forecast_df.target.values, linewidth=1, label=f"{legend_prefix}forecast", ) forecast_color = line[0].get_color() # draw prediction intervals from outer layers to inner ones if prediction_intervals and quantiles is not None: alpha = np.linspace(0, 1 / 2, len(quantiles) // 2 + 2)[1:-1] for quantile_idx in range(len(quantiles) // 2): # define upper and lower border for this iteration low_quantile = quantiles[quantile_idx] high_quantile = quantiles[-quantile_idx - 1] values_low = segment_forecast_df[f"{quantile_prefix}{low_quantile}"].values values_high = segment_forecast_df[f"{quantile_prefix}{high_quantile}"].values # if (low_quantile, high_quantile) is the smallest interval if quantile_idx == len(quantiles) // 2 - 1: ax[i].fill_between( segment_forecast_df.index.values, values_low, values_high, facecolor=forecast_color, alpha=alpha[quantile_idx], label=f"{legend_prefix}{low_quantile}-{high_quantile}", ) # if there is some interval inside (low_quantile, high_quantile) we should plot around it else: low_next_quantile = quantiles[quantile_idx + 1] high_prev_quantile = quantiles[-quantile_idx - 2] values_next = segment_forecast_df[f"{quantile_prefix}{low_next_quantile}"].values ax[i].fill_between( segment_forecast_df.index.values, values_low, values_next, facecolor=forecast_color, alpha=alpha[quantile_idx], label=f"{legend_prefix}{low_quantile}-{high_quantile}", ) values_prev = segment_forecast_df[f"{quantile_prefix}{high_prev_quantile}"].values ax[i].fill_between( segment_forecast_df.index.values, values_high, values_prev, facecolor=forecast_color, alpha=alpha[quantile_idx], ) # when we can't find pair quantile, we plot it separately if len(quantiles) % 2 != 0: remaining_quantile = quantiles[len(quantiles) // 2] values = segment_forecast_df[f"{quantile_prefix}{remaining_quantile}"].values ax[i].plot( segment_forecast_df.index.values, values, "--", color=forecast_color, label=f"{legend_prefix}{remaining_quantile}", ) ax[i].set_title(segment) ax[i].tick_params("x", rotation=45) ax[i].legend(loc="upper left")
[docs]def plot_backtest( forecast_df: pd.DataFrame, ts: "TSDataset", segments: Optional[List[str]] = None, columns_num: int = 2, history_len: Union[int, Literal["all"]] = 0, figsize: Tuple[int, int] = (10, 5), ): """Plot targets and forecast for backtest pipeline. This function doesn't support intersecting folds. Parameters ---------- forecast_df: forecasted dataframe with timeseries data ts: dataframe of timeseries that was used for backtest segments: segments to plot columns_num: number of subplots columns history_len: length of pre-backtest history to plot, if value is "all" then plot all the history figsize: size of the figure per subplot with one segment in inches Raises ------ ValueError: if ``history_len`` is negative ValueError: if folds are intersecting """ if history_len != "all" and history_len < 0: raise ValueError("Parameter history_len should be non-negative or 'all'") if segments is None: segments = sorted(ts.segments) fold_numbers = forecast_df[segments[0]]["fold_number"] _validate_intersecting_segments(fold_numbers) folds = sorted(set(fold_numbers)) # prepare dataframes df = ts.df forecast_start = forecast_df.index.min() history_df = df[df.index < forecast_start] backtest_df = df[df.index >= forecast_start] # prepare colors default_colors = plt.rcParams["axes.prop_cycle"].by_key()["color"] color_cycle = itertools.cycle(default_colors) lines_colors = {line_name: next(color_cycle) for line_name in ["history", "test", "forecast"]} _, ax = _prepare_axes(num_plots=len(segments), columns_num=columns_num, figsize=figsize) for i, segment in enumerate(segments): segment_backtest_df = backtest_df[segment] segment_history_df = history_df[segment] segment_forecast_df = forecast_df[segment] is_full_folds = set(segment_backtest_df.index) == set(segment_forecast_df.index) single_point_forecast = len(segment_backtest_df) == 1 draw_only_lines = is_full_folds and not single_point_forecast # plot history if history_len == "all": plot_df = pd.concat((segment_history_df, segment_backtest_df)) elif history_len > 0: plot_df = pd.concat((segment_history_df.tail(history_len), segment_backtest_df)) else: plot_df = segment_backtest_df ax[i].plot(plot_df.index, plot_df.target, color=lines_colors["history"]) for fold_number in folds: start_fold = fold_numbers[fold_numbers == fold_number].index.min() end_fold = fold_numbers[fold_numbers == fold_number].index.max() end_fold_exclusive = pd.date_range(start=end_fold, periods=2, freq=ts.freq)[1] # draw test backtest_df_slice_fold = segment_backtest_df[start_fold:end_fold_exclusive] ax[i].plot(backtest_df_slice_fold.index, backtest_df_slice_fold.target, color=lines_colors["test"]) if draw_only_lines: # draw forecast forecast_df_slice_fold = segment_forecast_df[start_fold:end_fold_exclusive] ax[i].plot(forecast_df_slice_fold.index, forecast_df_slice_fold.target, color=lines_colors["forecast"]) else: forecast_df_slice_fold = segment_forecast_df[start_fold:end_fold] backtest_df_slice_fold = backtest_df_slice_fold.loc[forecast_df_slice_fold.index] # draw points on test ax[i].scatter(backtest_df_slice_fold.index, backtest_df_slice_fold.target, color=lines_colors["test"]) # draw forecast ax[i].scatter( forecast_df_slice_fold.index, forecast_df_slice_fold.target, color=lines_colors["forecast"] ) # draw borders of current fold opacity = 0.075 * ((fold_number + 1) % 2) + 0.075 ax[i].axvspan( start_fold, end_fold_exclusive, alpha=opacity, color="skyblue", ) # plot legend legend_handles = [ Line2D([0], [0], marker="o", color=color, label=label) for label, color in lines_colors.items() ] ax[i].legend(handles=legend_handles) ax[i].set_title(segment) ax[i].tick_params("x", rotation=45)
[docs]def plot_backtest_interactive( forecast_df: pd.DataFrame, ts: "TSDataset", segments: Optional[List[str]] = None, history_len: Union[int, Literal["all"]] = 0, figsize: Tuple[int, int] = (900, 600), ) -> go.Figure: """Plot targets and forecast for backtest pipeline using plotly. Parameters ---------- forecast_df: forecasted dataframe with timeseries data ts: dataframe of timeseries that was used for backtest segments: segments to plot history_len: length of pre-backtest history to plot, if value is "all" then plot all the history figsize: size of the figure in pixels Returns ------- go.Figure: result of plotting Raises ------ ValueError: if ``history_len`` is negative ValueError: if folds are intersecting """ if history_len != "all" and history_len < 0: raise ValueError("Parameter history_len should be non-negative or 'all'") if segments is None: segments = sorted(ts.segments) fold_numbers = forecast_df[segments[0]]["fold_number"] _validate_intersecting_segments(fold_numbers) folds = sorted(set(fold_numbers)) # prepare dataframes df = ts.df forecast_start = forecast_df.index.min() history_df = df[df.index < forecast_start] backtest_df = df[df.index >= forecast_start] # prepare colors colors = plotly.colors.qualitative.Dark24 fig = go.Figure() for i, segment in enumerate(segments): segment_backtest_df = backtest_df[segment] segment_history_df = history_df[segment] segment_forecast_df = forecast_df[segment] is_full_folds = set(segment_backtest_df.index) == set(segment_forecast_df.index) single_point_forecast = len(segment_backtest_df) == 1 draw_only_lines = is_full_folds and not single_point_forecast # plot history if history_len == "all": plot_df = segment_history_df.append(segment_backtest_df) elif history_len > 0: plot_df = segment_history_df.tail(history_len).append(segment_backtest_df) else: plot_df = segment_backtest_df fig.add_trace( go.Scattergl( x=plot_df.index, y=plot_df.target, legendgroup=f"{segment}", name=f"{segment}", mode="lines", marker_color=colors[i % len(colors)], showlegend=True, line=dict(width=2, dash="dash"), ) ) for fold_number in folds: start_fold = fold_numbers[fold_numbers == fold_number].index.min() end_fold = fold_numbers[fold_numbers == fold_number].index.max() end_fold_exclusive = pd.date_range(start=end_fold, periods=2, freq=ts.freq)[1] # draw test backtest_df_slice_fold = segment_backtest_df[start_fold:end_fold_exclusive] fig.add_trace( go.Scattergl( x=backtest_df_slice_fold.index, y=backtest_df_slice_fold.target, legendgroup=f"{segment}", name=f"Test: {segment}", mode="lines", marker_color=colors[i % len(colors)], showlegend=False, line=dict(width=2, dash="solid"), ) ) if draw_only_lines: # draw forecast forecast_df_slice_fold = segment_forecast_df[start_fold:end_fold_exclusive] fig.add_trace( go.Scattergl( x=forecast_df_slice_fold.index, y=forecast_df_slice_fold.target, legendgroup=f"{segment}", name=f"Forecast: {segment}", mode="lines", marker_color=colors[i % len(colors)], showlegend=False, line=dict(width=2, dash="dot"), ) ) else: forecast_df_slice_fold = segment_forecast_df[start_fold:end_fold] backtest_df_slice_fold = backtest_df_slice_fold.loc[forecast_df_slice_fold.index] # draw points on test fig.add_trace( go.Scattergl( x=backtest_df_slice_fold.index, y=backtest_df_slice_fold.target, legendgroup=f"{segment}", name=f"Test: {segment}", mode="markers", marker_color=colors[i % len(colors)], showlegend=False, ) ) # draw forecast fig.add_trace( go.Scattergl( x=forecast_df_slice_fold.index, y=forecast_df_slice_fold.target, legendgroup=f"{segment}", name=f"Forecast: {segment}", mode="markers", marker_color=colors[i % len(colors)], showlegend=False, ) ) if i == 0: opacity = 0.075 * ((fold_number + 1) % 2) + 0.075 fig.add_vrect( x0=start_fold, x1=end_fold_exclusive, line_width=0, fillcolor="blue", opacity=opacity, ) fig.update_layout( height=figsize[1], width=figsize[0], title="Backtest for all segments", xaxis_title="timestamp", yaxis_title="target", legend=dict(itemsizing="trace", title="Segments"), updatemenus=[ dict( type="buttons", direction="left", xanchor="left", yanchor="top", showactive=True, x=1.0, y=1.1, buttons=[ dict(method="restyle", args=["visible", "all"], label="show all"), dict(method="restyle", args=["visible", "legendonly"], label="hide all"), ], ) ], annotations=[ dict(text="Show segments:", showarrow=False, x=1.0, y=1.08, xref="paper", yref="paper", align="left") ], ) return fig
[docs]def plot_residuals( forecast_df: pd.DataFrame, ts: "TSDataset", feature: Union[str, Literal["timestamp"]] = "timestamp", transforms: Sequence["Transform"] = (), segments: Optional[List[str]] = None, columns_num: int = 2, figsize: Tuple[int, int] = (10, 5), ): """Plot residuals for predictions from backtest against some feature. Parameters ---------- forecast_df: forecasted dataframe with timeseries data ts: dataframe of timeseries that was used for backtest feature: feature name to draw against residuals, if "timestamp" plot residuals against the timestamp transforms: sequence of transforms to get feature column segments: segments to use columns_num: number of columns in subplots figsize: size of the figure per subplot with one segment in inches Raises ------ ValueError: if feature isn't present in the dataset after applying transformations Notes ----- Parameter ``transforms`` is necessary because some pipelines doesn't save features in their forecasts, e.g. :py:mod:`etna.ensembles` pipelines. """ if segments is None: segments = sorted(ts.segments) _, ax = _prepare_axes(num_plots=len(segments), columns_num=columns_num, figsize=figsize) ts_copy = deepcopy(ts) ts_copy.fit_transform(transforms=transforms) ts_residuals = get_residuals(forecast_df=forecast_df, ts=ts_copy) df = ts_residuals.to_pandas() # check if feature is present in dataset if feature != "timestamp": all_features = set(df.columns.get_level_values("feature").unique()) if feature not in all_features: raise ValueError("Given feature isn't present in the dataset after applying transformations") for i, segment in enumerate(segments): segment_forecast_df = forecast_df.loc[:, pd.IndexSlice[segment, :]][segment].reset_index() segment_residuals_df = df.loc[:, pd.IndexSlice[segment, :]][segment].reset_index() residuals = segment_residuals_df["target"].values feature_values = segment_residuals_df[feature].values # highlight different backtest folds if feature == "timestamp": folds = sorted(set(segment_forecast_df["fold_number"])) for fold_number in folds: forecast_df_slice_fold = segment_forecast_df[segment_forecast_df["fold_number"] == fold_number] ax[i].axvspan( forecast_df_slice_fold["timestamp"].min(), forecast_df_slice_fold["timestamp"].max(), alpha=0.15 * (int(forecast_df_slice_fold["fold_number"].max() + 1) % 2), color="skyblue", ) ax[i].scatter(feature_values, residuals, c="b") ax[i].set_title(segment) ax[i].tick_params("x", rotation=45) ax[i].set_xlabel(feature)
[docs]def qq_plot( residuals_ts: "TSDataset", qq_plot_params: Optional[Dict[str, Any]] = None, segments: Optional[List[str]] = None, columns_num: int = 2, figsize: Tuple[int, int] = (10, 5), ): """Plot Q-Q plots for segments. Parameters ---------- residuals_ts: dataset with the time series, expected to be the residuals of the model qq_plot_params: dictionary with parameters for qq plot, :py:func:`statsmodels.graphics.gofplots.qqplot` is used segments: segments to plot columns_num: number of columns in subplots figsize: size of the figure per subplot with one segment in inches """ if qq_plot_params is None: qq_plot_params = {} if segments is None: segments = sorted(residuals_ts.segments) _, ax = _prepare_axes(num_plots=len(segments), columns_num=columns_num, figsize=figsize) residuals_df = residuals_ts.to_pandas() for i, segment in enumerate(segments): residuals_segment = residuals_df.loc[:, pd.IndexSlice[segment, "target"]] qqplot(residuals_segment, ax=ax[i], **qq_plot_params) ax[i].set_title(segment)
[docs]class PerFoldAggregation(str, Enum): """Enum for types of aggregation in a metric per-segment plot.""" mean = "mean" sum = "median" @classmethod def _missing_(cls, value): raise NotImplementedError( f"{value} is not a valid {cls.__name__}. Only {', '.join([repr(m.value) for m in cls])} aggregations are allowed" )
[docs] def get_function(self): """Get aggregation function.""" if self.value == "mean": return np.nanmean elif self.value == "median": return np.nanmedian
[docs]def plot_metric_per_segment( metrics_df: pd.DataFrame, metric_name: str, ascending: bool = False, per_fold_aggregation_mode: str = PerFoldAggregation.mean.value, top_k: Optional[int] = None, barplot_params: Optional[Dict[str, Any]] = None, figsize: Tuple[int, int] = (10, 5), ): """Plot barplot with per-segment metrics. Parameters ---------- metrics_df: dataframe with metrics calculated on the backtest metric_name: name of the metric to visualize ascending: * If True, small values at the top; * If False, big values at the top. per_fold_aggregation_mode: how to aggregate metrics over the folds if they aren't already aggregated (see :py:class:`~etna.analysis.forecast.plots.PerFoldAggregation`) top_k: number segments to show after ordering according to ``ascending`` barplot_params: dictionary with parameters for plotting, :py:func:`seaborn.barplot` is used figsize: size of the figure per subplot with one segment in inches Raises ------ ValueError: if ``metric_name`` isn't present in ``metrics_df`` NotImplementedError: unknown ``per_fold_aggregation_mode`` is given """ if barplot_params is None: barplot_params = {} aggregation_mode = PerFoldAggregation(per_fold_aggregation_mode) plt.figure(figsize=figsize) if metric_name not in metrics_df.columns: raise ValueError("Given metric_name isn't present in metrics_df") if "fold_number" in metrics_df.columns: metrics_dict = ( metrics_df.groupby("segment").agg({metric_name: aggregation_mode.get_function()}).to_dict()[metric_name] ) else: metrics_dict = metrics_df["segment", metric_name].to_dict()[metric_name] segments = np.array(list(metrics_dict.keys())) values = np.array(list(metrics_dict.values())) sort_idx = np.argsort(values) if not ascending: sort_idx = sort_idx[::-1] segments = segments[sort_idx][:top_k] values = values[sort_idx][:top_k] sns.barplot(x=values, y=segments, orient="h", **barplot_params) plt.title("Metric per-segment plot") plt.xlabel("Segment") plt.ylabel(metric_name) plt.grid()
[docs]class MetricPlotType(str, Enum): """Enum for types of plot in :py:func:`~etna.analysis.forecast.plots.metric_per_segment_distribution_plot`. Attributes ---------- hist: Histogram plot, :py:func:`seaborn.histplot` is used box: Boxplot, :py:func:`seaborn.boxplot` is used violin: Violin plot, :py:func:`seaborn.violinplot` is used """ hist = "hist" box = "box" violin = "violin" @classmethod def _missing_(cls, value): raise NotImplementedError( f"{value} is not a valid {cls.__name__}. Only {', '.join([repr(m.value) for m in cls])} plots are allowed" )
[docs] def get_function(self): """Get aggregation function.""" if self.value == "hist": return sns.histplot elif self.value == "box": return sns.boxplot elif self.value == "violin": return sns.violinplot
[docs]def metric_per_segment_distribution_plot( metrics_df: pd.DataFrame, metric_name: str, per_fold_aggregation_mode: Optional[str] = None, plot_type: Union[Literal["hist"], Literal["box"], Literal["violin"]] = "hist", seaborn_params: Optional[Dict[str, Any]] = None, figsize: Tuple[int, int] = (10, 5), ): """Plot per-segment metrics distribution. Parameters ---------- metrics_df: dataframe with metrics calculated on the backtest metric_name: name of the metric to visualize per_fold_aggregation_mode: * If None, separate distributions for each fold will be drawn * If str, determines how to aggregate metrics over the folds if they aren't already aggregated (see :py:class:`~etna.analysis.forecast.plots.PerFoldAggregation`) plot_type: type of plot (see :py:class:`~etna.analysis.forecast.plots.MetricPlotType`) seaborn_params: dictionary with parameters for plotting figsize: size of the figure per subplot with one segment in inches Raises ------ ValueError: if ``metric_name`` isn't present in ``metrics_df`` NotImplementedError: unknown ``per_fold_aggregation_mode`` is given """ if seaborn_params is None: seaborn_params = {} metrics_df = metrics_df.reset_index(drop=True) plot_type_enum = MetricPlotType(plot_type) plot_function = plot_type_enum.get_function() plt.figure(figsize=figsize) if metric_name not in metrics_df.columns: raise ValueError("Given metric_name isn't present in metrics_df") # draw plot for each fold if per_fold_aggregation_mode is None and "fold_number" in metrics_df.columns: if plot_type_enum == MetricPlotType.hist: plot_function(data=metrics_df, x=metric_name, hue="fold_number", **seaborn_params) else: plot_function(data=metrics_df, x="fold_number", y=metric_name, **seaborn_params) plt.xlabel("Fold") # draw one plot of aggregated data else: if "fold_number" in metrics_df.columns: agg_func = PerFoldAggregation(per_fold_aggregation_mode).get_function() metrics_df = metrics_df.groupby("segment").agg({metric_name: agg_func}) if plot_type_enum == MetricPlotType.hist: plot_function(data=metrics_df, x=metric_name, **seaborn_params) else: plot_function(data=metrics_df, y=metric_name, **seaborn_params) plt.title("Metric per-segment distribution plot") plt.grid()
[docs]class ComponentsMode(str, Enum): """Enum for components plotting modes.""" per_component = "per-component" joint = "joint" @classmethod def _missing_(cls, value): raise NotImplementedError( f"{value} is not a valid {cls.__name__}. Supported modes: {', '.join([repr(m.value) for m in cls])}" )
[docs]def plot_forecast_decomposition( forecast_ts: "TSDataset", test_ts: Optional["TSDataset"] = None, mode: Union[Literal["per-component"], Literal["joint"]] = "per-component", segments: Optional[List[str]] = None, columns_num: int = 1, figsize: Tuple[int, int] = (10, 5), show_grid: bool = False, ): """ Plot of prediction and its components. Parameters ---------- forecast_ts: forecasted TSDataset with timeseries data, single-forecast mode test_ts: TSDataset with timeseries data mode: Components plotting type #. ``per-component`` -- plot each component in separate axes #. ``joint`` -- plot all the components in the same axis segments: segments to plot; if not given plot all the segments columns_num: number of graphics columns; when mode=``per-component`` all plots will be in the single column figsize: size of the figure per subplot with one segment in inches show_grid: whether to show grid for each chart Raises ------ ValueError: if components aren't present in ``forecast_ts`` NotImplementedError: unknown ``mode`` is given """ components_mode = ComponentsMode(mode) if segments is None: segments = list(forecast_ts.columns.get_level_values("segment").unique()) column_names = set(forecast_ts.columns.get_level_values("feature")) components = list(match_target_components(column_names)) if len(components) == 0: raise ValueError("No components were detected in the provided `forecast_ts`.") if components_mode == ComponentsMode.joint: num_plots = len(segments) else: # plotting target and forecast separately from components, thus +1 for each segment num_plots = math.ceil(len(segments) / columns_num) * columns_num * (len(components) + 1) _, ax = _prepare_axes(num_plots=num_plots, columns_num=columns_num, figsize=figsize, set_grid=show_grid) if test_ts is not None: test_ts.df.sort_values(by="timestamp", inplace=True) alpha = 0.5 if components_mode == ComponentsMode.joint else 1.0 ax_array = np.asarray(ax).reshape(-1, columns_num).T.ravel() i = 0 for segment in segments: if test_ts is not None: segment_test_df = test_ts[:, segment, :][segment] else: segment_test_df = pd.DataFrame(columns=["timestamp", "target", "segment"]) segment_forecast_df = forecast_ts[:, segment, :][segment].sort_values(by="timestamp") ax_array[i].set_title(segment) ax_array[i].plot(segment_forecast_df.index.values, segment_forecast_df["target"].values, label="forecast") if test_ts is not None: ax_array[i].plot(segment_test_df.index.values, segment_test_df["target"].values, label="target") else: # skip color for target next(ax_array[i]._get_lines.prop_cycler) for component in components: if components_mode == ComponentsMode.per_component: ax_array[i].legend(loc="upper left") ax_array[i].set_xticklabels([]) i += 1 ax_array[i].plot( segment_forecast_df.index.values, segment_forecast_df[component].values, label=component, alpha=alpha ) ax_array[i].tick_params("x", rotation=45) ax_array[i].legend(loc="upper left") i += 1
[docs]def prediction_actual_scatter_plot( forecast_df: pd.DataFrame, ts: "TSDataset", segments: Optional[List[str]] = None, columns_num: int = 2, figsize: Tuple[int, int] = (10, 5), ): """Plot scatter plot with forecasted/actual values for segments. Parameters ---------- forecast_df: forecasted dataframe with timeseries data ts: dataframe of timeseries that was used for backtest segments: segments to plot columns_num: number of columns in subplots figsize: size of the figure per subplot with one segment in inches """ if segments is None: segments = sorted(ts.segments) _, ax = _prepare_axes(num_plots=len(segments), columns_num=columns_num, figsize=figsize) df = ts.to_pandas() for i, segment in enumerate(segments): forecast_segment_df = forecast_df.loc[:, pd.IndexSlice[segment, "target"]] segment_df = df.loc[forecast_segment_df.index, pd.IndexSlice[segment, "target"]] # fit a linear model x = forecast_segment_df.values y = segment_df model = LinearRegression() model.fit(X=x[:, np.newaxis], y=y) r2 = r2_score(y_true=y, y_pred=model.predict(x[:, np.newaxis])) # prepare the limits of the plot, for the identity to be from corner to corner x_min = min(x.min(), y.min()) x_max = max(x.max(), y.max()) # add some space at the borders of the plot x_min -= 0.05 * (x_max - x_min) x_max += 0.05 * (x_max - x_min) xlim = (x_min, x_max) ylim = xlim # make plots ax[i].scatter(x, y, label=f"R2: {r2:.3f}") x_grid = np.linspace(*xlim, 100) ax[i].plot(x_grid, x_grid, label="identity", linestyle="dotted", color="grey") ax[i].plot( x_grid, model.predict(x_grid[:, np.newaxis]), label=f"best fit: {model.coef_[0]:.3f} x + {model.intercept_:.3f}", linestyle="dashed", color="black", ) ax[i].set_title(segment) ax[i].set_xlabel("$\\widehat{y}$") ax[i].set_ylabel("$y$") ax[i].set_xlim(*xlim) ax[i].set_ylim(*ylim) ax[i].legend()