Source code for etna.transforms.decomposition.stl

from typing import Any
from typing import Dict
from typing import List
from typing import Optional
from typing import Union

import pandas as pd
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.base.tsa_model import TimeSeriesModel
from statsmodels.tsa.exponential_smoothing.ets import ETSModel
from statsmodels.tsa.forecasting.stl import STLForecast
from statsmodels.tsa.forecasting.stl import STLForecastResults

from etna.distributions import BaseDistribution
from etna.distributions import CategoricalDistribution
from etna.transforms.base import OneSegmentTransform
from etna.transforms.base import ReversiblePerSegmentWrapper
from etna.transforms.utils import match_target_quantiles


[docs]class _OneSegmentSTLTransform(OneSegmentTransform): def __init__( self, in_column: str, period: int, model: Union[str, TimeSeriesModel] = "arima", robust: bool = False, model_kwargs: Optional[Dict[str, Any]] = None, stl_kwargs: Optional[Dict[str, Any]] = None, ): """ Init _OneSegmentSTLTransform. Parameters ---------- in_column: name of processed column period: size of seasonality model: model to predict trend, default options are: 1. "arima": ``ARIMA(data, 1, 1, 0)`` (default) 2. "holt": ``ETSModel(data, trend='add')`` Custom model should be a subclass of :py:class:`statsmodels.tsa.base.tsa_model.TimeSeriesModel` and have method ``get_prediction`` (not just ``predict``) robust: flag indicating whether to use robust version of STL model_kwargs: parameters for the model like in :py:class:`statsmodels.tsa.seasonal.STLForecast` stl_kwargs: additional parameters for :py:class:`statsmodels.tsa.seasonal.STLForecast` """ if model_kwargs is None: model_kwargs = {} if stl_kwargs is None: stl_kwargs = {} self.in_column = in_column self.period = period if isinstance(model, str): if model == "arima": self.model = ARIMA if len(model_kwargs) == 0: model_kwargs = {"order": (1, 1, 0)} elif model == "holt": self.model = ETSModel if len(model_kwargs) == 0: model_kwargs = {"trend": "add"} else: raise ValueError(f"Not a valid option for model: {model}") elif isinstance(model, TimeSeriesModel): self.model = model else: raise ValueError("Model should be a string or TimeSeriesModel") self.robust = robust self.model_kwargs = model_kwargs self.stl_kwargs = stl_kwargs self.fit_results: Optional[STLForecastResults] = None
[docs] def fit(self, df: pd.DataFrame) -> "_OneSegmentSTLTransform": """ Perform STL decomposition and fit trend model. Parameters ---------- df: Features dataframe with time Returns ------- result: _OneSegmentSTLTransform instance after processing """ df = df.loc[df[self.in_column].first_valid_index() : df[self.in_column].last_valid_index()] if df[self.in_column].isnull().values.any(): raise ValueError("The input column contains NaNs in the middle of the series! Try to use the imputer.") model = STLForecast( df[self.in_column], self.model, model_kwargs=self.model_kwargs, period=self.period, robust=self.robust, **self.stl_kwargs, ) self.fit_results = model.fit() return self
[docs] def transform(self, df: pd.DataFrame) -> pd.DataFrame: """ Subtract trend and seasonal component. Parameters ---------- df: Features dataframe with time Returns ------- result: pd.DataFrame Dataframe with extracted features """ result = df if self.fit_results is not None: season_trend = self.fit_results.get_prediction( start=df[self.in_column].first_valid_index(), end=df[self.in_column].last_valid_index() ).predicted_mean else: raise ValueError("Transform is not fitted! Fit the Transform before calling transform method.") result[self.in_column] -= season_trend return result
[docs] def inverse_transform(self, df: pd.DataFrame) -> pd.DataFrame: """ Add trend and seasonal component. Parameters ---------- df: Features dataframe with time Returns ------- result: pd.DataFrame Dataframe with extracted features """ result = df if self.fit_results is None: raise ValueError("Transform is not fitted! Fit the Transform before calling inverse_transform method.") season_trend = self.fit_results.get_prediction( start=df[self.in_column].first_valid_index(), end=df[self.in_column].last_valid_index() ).predicted_mean result[self.in_column] += season_trend if self.in_column == "target": quantiles = match_target_quantiles(set(result.columns)) for quantile_column_nm in quantiles: result.loc[:, quantile_column_nm] += season_trend return result
[docs]class STLTransform(ReversiblePerSegmentWrapper): """Transform that uses :py:class:`statsmodels.tsa.seasonal.STL` to subtract season and trend from the data. Warning ------- This transform can suffer from look-ahead bias. For transforming data at some timestamp it uses information from the whole train part. """ def __init__( self, in_column: str, period: int, model: Union[str, TimeSeriesModel] = "arima", robust: bool = False, model_kwargs: Optional[Dict[str, Any]] = None, stl_kwargs: Optional[Dict[str, Any]] = None, ): """ Init STLTransform. Parameters ---------- in_column: name of processed column period: size of seasonality model: model to predict trend, default options are: 1. "arima": ``ARIMA(data, 1, 1, 0)`` (default) 2. "holt": ``ETSModel(data, trend='add')`` Custom model should be a subclass of :py:class:`statsmodels.tsa.base.tsa_model.TimeSeriesModel` and have method ``get_prediction`` (not just ``predict``) robust: flag indicating whether to use robust version of STL model_kwargs: parameters for the model like in :py:class:`statsmodels.tsa.seasonal.STLForecast` stl_kwargs: additional parameters for :py:class:`statsmodels.tsa.seasonal.STLForecast` """ self.in_column = in_column self.period = period self.model = model self.robust = robust self.model_kwargs = model_kwargs self.stl_kwargs = stl_kwargs super().__init__( transform=_OneSegmentSTLTransform( in_column=self.in_column, period=self.period, model=self.model, robust=self.robust, model_kwargs=self.model_kwargs, stl_kwargs=self.stl_kwargs, ), required_features=[self.in_column], )
[docs] def get_regressors_info(self) -> List[str]: """Return the list with regressors created by the transform.""" return []
[docs] def params_to_tune(self) -> Dict[str, BaseDistribution]: """Get default grid for tuning hyperparameters. This grid tunes parameters: ``model``, ``robust``. Other parameters are expected to be set by the user. Returns ------- : Grid to tune. """ return { "model": CategoricalDistribution(["arima", "holt"]), "robust": CategoricalDistribution([False, True]), }