MAPE¶
- class MAPE(mode: str = MetricAggregationMode.per_segment, **kwargs)[source]¶
Bases:
etna.metrics.base.Metric
Mean absolute percentage error metric with multi-segment computation support.
\[MAPE(y\_true, y\_pred) = \frac{1}{n}\cdot\frac{\sum_{i=0}^{n-1}{\mid y\_true_i - y\_pred_i\mid}}{\mid y\_true_i \mid + \epsilon}\]Notes
You can read more about logic of multi-segment metrics in Metric docs.
Init metric.
- Parameters
mode ('macro' or 'per-segment') – metrics aggregation mode
kwargs – metric’s computation arguments
- Inherited-members
Methods
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
Whether higher metric value is better.
name
Name of the metric for representation.
- property greater_is_better: bool¶
Whether higher metric value is better.