MSLE¶
- class MSLE(mode: str = MetricAggregationMode.per_segment, **kwargs)[source]¶
Bases:
etna.metrics.base.Metric
Mean squared logarithmic error metric with multi-segment computation support.
\[MSLE(y\_true, y\_pred) = \frac{1}{n}\cdot\sum_{i=0}^{n - 1}{(ln(1 + y\_true_i) - ln(1 + y\_pred_i))^2}\]Notes
You can read more about logic of multi-segment metrics in Metric docs.
Init metric.
- Parameters
mode ('macro' or 'per-segment') – metrics aggregation mode
kwargs – metric’s computation arguments
- Inherited-members
Methods
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
Whether higher metric value is better.
name
Name of the metric for representation.
- property greater_is_better: bool¶
Whether higher metric value is better.