TFTModel

class TFTModel(decoder_length: Optional[int] = None, encoder_length: Optional[int] = None, dataset_builder: Optional[etna.models.nn.utils.PytorchForecastingDatasetBuilder] = None, train_batch_size: int = 64, test_batch_size: int = 64, lr: float = 0.001, hidden_size: int = 16, lstm_layers: int = 1, attention_head_size: int = 4, dropout: float = 0.1, hidden_continuous_size: int = 8, loss: Optional[pytorch_forecasting.metrics.MultiHorizonMetric] = None, trainer_params: Optional[Dict[str, Any]] = None, quantiles_kwargs: Optional[Dict[str, Any]] = None, **kwargs)[source]

Bases: etna.models.nn.utils._DeepCopyMixin, etna.models.nn.utils.PytorchForecastingMixin, etna.models.mixins.SaveNNMixin, etna.models.base.PredictionIntervalContextRequiredAbstractModel

Wrapper for pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer.

Notes

We save pytorch_forecasting.data.timeseries.TimeSeriesDataSet in instance to use it in the model. It`s not right pattern of using Transforms and TSDataset.

Initialize TFT wrapper.

Parameters
  • decoder_length (Optional[int]) – Decoder length.

  • encoder_length (int) – Encoder length.

  • dataset_builder (etna.models.nn.utils.PytorchForecastingDatasetBuilder) – Dataset builder for PytorchForecasting.

  • train_batch_size (int) – Train batch size.

  • test_batch_size (int) – Test batch size.

  • lr (float) – Learning rate.

  • hidden_size (int) – Hidden size of network which can range from 8 to 512.

  • lstm_layers (int) – Number of LSTM layers.

  • attention_head_size (int) – Number of attention heads.

  • dropout (float) – Dropout rate.

  • hidden_continuous_size (int) – Hidden size for processing continuous variables.

  • loss (MultiHorizonMetric) – Loss function taking prediction and targets. Defaults to pytorch_forecasting.metrics.QuantileLoss.

  • trainer_kwargs – Additional arguments for pytorch_lightning Trainer.

  • quantiles_kwargs (Optional[Dict[str, Any]]) – Additional arguments for computing quantiles, look at to_quantiles() method for your loss.

  • trainer_params (Dict[str, Any]) –

Inherited-members

Methods

fit(ts)

Fit model.

forecast(ts, prediction_size[, ...])

Make predictions.

get_model()

Get internal model that is used inside etna class.

load(path)

Load an object.

params_to_tune()

Get default grid for tuning hyperparameters.

predict(ts, prediction_size[, ...])

Make predictions.

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

Attributes

context_size

Context size of the model.

forecast(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make predictions.

This method will make autoregressive predictions.

Parameters
  • ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

  • prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context for models that require it.

  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval

  • return_components (bool) – If True additionally returns forecast components

Returns

TSDataset with predictions.

Return type

TSDataset

get_model() Any[source]

Get internal model that is used inside etna class.

Model is the instance of pytorch_forecasting.models.temporal_fusion_transformer.TemporalFusionTransformer.

Returns

Internal model

Return type

Any

params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution][source]

Get default grid for tuning hyperparameters.

This grid tunes parameters: hidden_size, lstm_layers, dropout, attention_head_size, lr. Other parameters are expected to be set by the user.

Returns

Grid to tune.

Return type

Dict[str, etna.distributions.distributions.BaseDistribution]

predict(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make predictions.

This method will make predictions using true values instead of predicted on a previous step. It can be useful for making in-sample forecasts.

Parameters
  • ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

  • prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context.

  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval

  • return_components (bool) – If True additionally returns prediction components

Returns

TSDataset with predictions.

Return type

TSDataset

property context_size: int

Context size of the model.