SeasonalMovingAverageModel¶
- class SeasonalMovingAverageModel(window: int = 5, seasonality: int = 7)[source]¶
Bases:
etna.models.base.NonPredictionIntervalContextRequiredAbstractModel
Seasonal moving average.
\[y_{t} = \frac{\sum_{i=1}^{n} y_{t-is} }{n},\]where \(s\) is seasonality, \(n\) is window size (how many history values are taken for forecast).
Notes
This model supports in-sample and out-of-sample prediction decomposition. Prediction components are corresponding target lags with weights of \(1/window\).
Initialize seasonal moving average model.
Length of the context is
window * seasonality
.- Parameters
window (int) – Number of values taken for forecast for each point.
seasonality (int) – Lag between values taken for forecast.
- Inherited-members
Methods
fit
(ts)Fit model.
forecast
(ts, prediction_size[, ...])Make autoregressive forecasts.
Get internal model.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
predict
(ts, prediction_size[, return_components])Make predictions using true values as autoregression context (teacher forcing).
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
Context size of the model.
- fit(ts: etna.datasets.tsdataset.TSDataset) etna.models.seasonal_ma.SeasonalMovingAverageModel [source]¶
Fit model.
For this model, fit does nothing.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
- Returns
Model after fit
- Return type
- forecast(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, return_components: bool = False) etna.datasets.tsdataset.TSDataset [source]¶
Make autoregressive forecasts.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context.
return_components (bool) – If True additionally returns forecast components
- Returns
Dataset with predictions
- Raises
NotImplementedError: – if return_components mode is used
ValueError: – if context isn’t big enough
ValueError: – if forecast context contains NaNs
- Return type
- get_model() etna.models.seasonal_ma.SeasonalMovingAverageModel [source]¶
Get internal model.
- Returns
Itself
- Return type
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes
window
parameter. Other parameters are expected to be set by the user.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]
- predict(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, return_components: bool = False) etna.datasets.tsdataset.TSDataset [source]¶
Make predictions using true values as autoregression context (teacher forcing).
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context.
return_components (bool) – If True additionally returns prediction components
- Returns
Dataset with predictions
- Raises
NotImplementedError: – if return_components mode is used
ValueError: – if context isn’t big enough
ValueError: – if forecast context contains NaNs
- Return type
- property context_size: int¶
Context size of the model.