Pipeline

class Pipeline(model: Union[etna.models.base.NonPredictionIntervalContextIgnorantAbstractModel, etna.models.base.NonPredictionIntervalContextRequiredAbstractModel, etna.models.base.PredictionIntervalContextIgnorantAbstractModel, etna.models.base.PredictionIntervalContextRequiredAbstractModel], transforms: Sequence[etna.transforms.base.Transform] = (), horizon: int = 1)[source]

Bases: etna.pipeline.mixins.ModelPipelinePredictMixin, etna.pipeline.mixins.ModelPipelineParamsToTuneMixin, etna.pipeline.mixins.SaveModelPipelineMixin, etna.pipeline.base.BasePipeline

Pipeline of transforms with a final estimator.

Create instance of Pipeline with given parameters.

Parameters
Inherited-members

Methods

backtest(ts, metrics[, n_folds, mode, ...])

Run backtest with the pipeline.

fit(ts)

Fit the Pipeline.

forecast([ts, prediction_interval, ...])

Make a forecast of the next points of a dataset.

load(path[, ts])

Load an object.

params_to_tune()

Get hyperparameter grid to tune.

predict(ts[, start_timestamp, ...])

Make in-sample predictions on dataset in a given range.

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

Attributes

fit(ts: etna.datasets.tsdataset.TSDataset) etna.pipeline.pipeline.Pipeline[source]

Fit the Pipeline.

Fit and apply given transforms to the data, then fit the model on the transformed data.

Parameters

ts (etna.datasets.tsdataset.TSDataset) – Dataset with timeseries data

Returns

Fitted Pipeline instance

Return type

etna.pipeline.pipeline.Pipeline

forecast(ts: Optional[etna.datasets.tsdataset.TSDataset] = None, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), n_folds: int = 3, return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make a forecast of the next points of a dataset.

The result of forecasting starts from the last point of ts, not including it.

Parameters
  • ts (Optional[etna.datasets.tsdataset.TSDataset]) – Dataset to forecast. If not given, dataset given during :py:meth:fit is used.

  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% taken to form a 95% prediction interval

  • n_folds (int) – Number of folds to use in the backtest for prediction interval estimation

  • return_components (bool) – If True additionally returns forecast components

Returns

Dataset with predictions

Return type

etna.datasets.tsdataset.TSDataset