_SingleDifferencingTransform¶
- class _SingleDifferencingTransform(in_column: str, period: int = 1, inplace: bool = True, out_column: Optional[str] = None)[source]¶
Bases:
etna.transforms.base.ReversibleTransform
Calculate a time series differences of order 1.
During
fit
this transform can work with NaNs at the beginning of the segment, but fails when meets NaN inside the segment. Duringtransform
andinverse_transform
there is no special treatment of NaNs.Notes
To understand how transform works we recommend: Stationarity and Differencing
Create instance of _SingleDifferencingTransform.
- Parameters
in_column (str) – name of processed column
period (int) – number of steps back to calculate the difference with, it should be >= 1
inplace (bool) –
if True, apply transformation inplace to in_column,
if False, add transformed column to dataset
out_column (Optional[str]) –
if set, name of added column, the final name will be ‘{out_column}’;
if isn’t set, name will be based on
self.__repr__()
- Raises
ValueError: – if period is not integer >= 1
- Inherited-members
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
inverse_transform
(ts)Inverse transform TSDataset.
load
(path)Load an object.
params_to_tune
()Get grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
- fit(ts: etna.datasets.tsdataset.TSDataset) etna.transforms.math.differencing._SingleDifferencingTransform [source]¶
Fit the transform.
- Parameters
- Return type
etna.transforms.math.differencing._SingleDifferencingTransform