ResampleWithDistributionTransform

class ResampleWithDistributionTransform(in_column: str, distribution_column: str, inplace: bool = True, out_column: Optional[str] = None)[source]

Bases: etna.transforms.base.IrreversiblePerSegmentWrapper

ResampleWithDistributionTransform resamples the given column using the distribution of the other column.

Warning

This transform can suffer from look-ahead bias. For transforming data at some timestamp it uses information from the whole train part.

Init ResampleWithDistributionTransform.

Parameters
  • in_column (str) – name of column to be resampled

  • distribution_column (str) – name of column to obtain the distribution from

  • inplace (bool) –

    • if True, apply resampling inplace to in_column,

    • if False, add transformed column to dataset

  • out_column (Optional[str]) – name of added column. If not given, use self.__repr__()

Inherited-members

Methods

fit(ts)

Fit the transform.

fit_transform(ts)

Fit and transform TSDataset.

get_regressors_info()

Return the list with regressors created by the transform.

inverse_transform(ts)

Inverse transform TSDataset.

load(path)

Load an object.

params_to_tune()

Get grid for tuning hyperparameters.

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

transform(ts)

Transform TSDataset inplace.

fit(ts: etna.datasets.tsdataset.TSDataset) etna.transforms.missing_values.resample.ResampleWithDistributionTransform[source]

Fit the transform.

Parameters

ts (etna.datasets.tsdataset.TSDataset) –

Return type

etna.transforms.missing_values.resample.ResampleWithDistributionTransform

get_regressors_info() List[str][source]

Return the list with regressors created by the transform.

Return type

List[str]