FourierTransform¶
- class FourierTransform(period: float, order: Optional[int] = None, mods: Optional[Sequence[int]] = None, out_column: Optional[str] = None)[source]¶
Bases:
etna.transforms.base.IrreversibleTransform
,etna.transforms.base.FutureMixin
Adds fourier features to the dataset.
Notes
To understand how transform works we recommend: Fourier series.
Parameter
period
is responsible for the seasonality we want to capture.Parameters
order
andmods
define which harmonics will be used.
Parameter
order
is a more user-friendly version ofmods
. For example,order=2
can be represented asmods=[1, 2, 3, 4]
ifperiod
> 4 and asmods=[1, 2, 3]
if 3 <=period
<= 4.Create instance of FourierTransform.
- Parameters
period (float) –
the period of the seasonality to capture in frequency units of time series;
period
should be >= 2order (Optional[int]) –
upper order of Fourier components to include;
order
should be >= 1 and <= ceil(period/2))mods (Optional[Sequence[int]]) –
alternative and precise way of defining which harmonics will be used, for example
mods=[1, 3, 4]
means that sin of the first order and sin and cos of the second order will be used;mods
should be >= 1 and < periodout_column (Optional[str]) –
if set, name of added column, the final name will be ‘{out_columnt}_{mod}’;
if don’t set, name will be
transform.__repr__()
, repr will be made for transform that creates exactly this column
- Raises
ValueError: – if period < 2
ValueError: – if both or none of order, mods is set
ValueError: – if order is < 1 or > ceil(period/2)
ValueError: – if at least one mod is < 1 or >= period
- Inherited-members
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
inverse_transform
(ts)Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
- get_regressors_info() List[str] [source]¶
Return the list with regressors created by the transform.
- Return type
List[str]
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
If
self.order
is set then this grid tunesorder
parameter: Other parameters are expected to be set by the user.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]