OneHotEncoderTransform¶
- class OneHotEncoderTransform(in_column: str, out_column: Optional[str] = None)[source]¶
Bases:
etna.transforms.base.IrreversibleTransform
Encode categorical feature as a one-hot numeric features.
If unknown category is encountered during transform, the resulting one-hot encoded columns for this feature will be all zeros.
Init OneHotEncoderTransform.
- Parameters
in_column (str) – Name of column to be encoded
out_column (Optional[str]) – Prefix of names of added columns. If not given, use
self.__repr__()
- Inherited-members
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
inverse_transform
(ts)Inverse transform TSDataset.
load
(path)Load an object.
params_to_tune
()Get grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
- fit(ts: etna.datasets.tsdataset.TSDataset) etna.transforms.encoders.categorical.OneHotEncoderTransform [source]¶
Fit the transform.
- Parameters
- Return type