YeoJohnsonTransform¶
- class YeoJohnsonTransform(in_column: Optional[Union[str, List[str]]] = None, inplace: bool = True, out_column: Optional[str] = None, standardize: bool = True, mode: Union[etna.transforms.math.sklearn.TransformMode, str] = 'per-segment')[source]¶
Bases:
etna.transforms.math.sklearn.SklearnTransform
YeoJohnsonTransform applies Yeo-Johns transformation to a DataFrame.
Warning
This transform can suffer from look-ahead bias. For transforming data at some timestamp it uses information from the whole train part.
Create instance of YeoJohnsonTransform.
- Parameters
in_column (Optional[Union[str, List[str]]]) – columns to be transformed, if None - all columns will be transformed.
inplace (bool) –
if True, apply transformation inplace to in_column,
if False, add column to dataset.
out_column (Optional[str]) – base for the names of generated columns, uses
self.__repr__()
if not given.standardize (bool) – Set to True to apply zero-mean, unit-variance normalization to the transformed output.
mode (Union[etna.transforms.math.sklearn.TransformMode, str]) –
- Raises
ValueError: – if incorrect mode given
- Inherited-members
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
get_regressors_info
()Return the list with regressors created by the transform.
inverse_transform
(ts)Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes parameters:
mode
,standardize
. Other parameters are expected to be set by the user.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]